SA WG2 Meeting #124
S2-178847
Reno (USA), 27 November - 1 December 2017
(revision of)
Source:
Mediatek Inc.
Title:
OI4f - On co-existence rules for network slices
Document for:
Discussion
Agenda Item:
6.5.1
Work Item / Release:
5GS_Ph1/ Rel15

Abstract of the contribution: This contribution discusses slice coexistence from a UE standpoint.
1
Introduction
Slice co-existence has been discussed for a few meetings and should be concluded in this SA#124 meeting. This contribution discusses whether or not coexistence rules are needed in the UE or whether existing mechanisms suffice.
2
Discussion

2.1
Problem Statement

Slice co-existence refers to slices that can co-exist with the same AMF – this is important as a fundamental design criterion is for a single AMF to serve a UE at any one time. In other words, multiple (requested) services may not be available to a UE if the serving AMF is not able to accommodate all the slices required for these services.
This leads to two questions:

a)
Should the UE know about semi-static slice coexistence rules? Or

b)
Should the network handle slice coexistence for the UE dynamically?
Point a) implies the UE requests only S-NSSAIs that can, presumably, co-exist. A consequence is for this UE to first prioritize among services according to slice co-existence rules, which also assumes the UE has rules in place for slice selection policy.
Point b) implies the UE may (initially) request S-NSSAIs that cannot co-exist.
In our view, b) is required even if a) were introduced, as the configuration in the UE may not be up-to-date and co-existence rules could change in time. Point b) is discussed further in §2.3 while §2.2 discusses co-existence of slices.

2.2
Slice co-existence

It should be discussed whether any standard limitation exists for slices to co-exist or if this should be left to deployment, under the principle that a single AMF serves a UE at any one time. Our proposal is on the latter for the very reason that whether and how slicing is done is an operator choice (with the exception of standard slices i.e. S-NSSAI with standard values). In other words, how slices may co-exist should not be limited by (complex) specification rules. 
The proposal in [1] introduces yet another identifier on top of SST and SD i.e. a coexistence and isolation class with associated UE mandate to only request slices that can co-exist according to these rules i.e. primarily leaves a network burden onto UE implementation which is uncalled for. This in our view unnecessarily and greatly exacerbates the complexity of network slicing and ultimately questions it even more from a UE implementation standpoint. 

Proposal 1: whether and how slices co-exist is a deployment issue as long as a single AMF serves a UE at any one time.

2.3
Allowed NSSAI and Rejected S-NSSAIs

Without a priori co-existence rules, the UE with Configured NSSAI could request any combination of S-NSSAIs as part of the Requested NSSAI, to which the network responds with an Allowed NSSAI and possibly individual rejected S-NSSAI(s) associated with given rejection cause and validity. A UE without a Configured NSSAI will be responded in the same fashion by the network. A rejected S-NSSAI may not be requested by the UE under given conditions (Stage 3) depending on the indicated cause and validity, as specified in TS23.501. A UE may thereafter use any of the S-NSSAI listed in the Allowed NSSAI.
Observation 1/Proposal 2: All S-NSSAIs present in an Allowed NSSAI can co-exist.

Given Observation 1/Proposal 2, it is further observed that a requested S-NSSAI that cannot co-exist with other S-NSSAIs in an Allowed NSSAI shall inevitably be rejected. This does not imply that a rejected S-NSSAI is an S-NSSAI that cannot co-exist with other S-NSSAIs in an Allowed S-NSSAI.
Observation 2: A requested S-NSSAI that cannot co-exist with other S-NSSAIs in an Allowed NSSAI will be rejected.

Observation 3: It is assumed a rejected S-NSSAI may or may not co-exist with S-NSSAIs in the corresponding Allowed NSSAI.

Proposal 3: The network rejects any requested S-NSSAI that cannot co-exist with any S-NSSAI(s) in an Allowed NSSAI, with an associated rejection cause and validity.
While it is expected a rejected S-NSSAI is so based on subscription criteria, it should indeed be possible to reject a requested S-NSSAI based on co-existence criteria; with the very same intended effect on the UE: the UE is not able to request such S-NSSAI, so long as it uses (Obs.1 co-existing) S-NSSAIs of the Allowed NSSAI which is already the expected behaviour. There is no particular limitation in TS23.501 as to why an S-NSSAI can be rejected. Co-existence (rather lack thereof) is a perfectly suitable reason. 

Note that TS23.501 specifies the following:
	An S-NSSAI may be rejected based on the following, but not limited to:
-
in the PLMN;

-
in the current Registration area.


With given rejection cause and validity, it should be possible to accommodate the above behaviour i.e. rejection due to lack of co-existence. The rejection cause and validity can be left to Stage 3 as currently assumed in TS23.501.
Observation 4: Allowed NSSAI and Rejected S-NSSAIs provide a fully flexible framework for operators to handle slice co-existence in the UE without the need for complex (semi-)static and constraining PLMN-wide co-existence rules. 

Without using Rejected S-NSSAIs for addressing a lack of co-existence, it could also be considered for the network to notify the UE with more than one Allowed NSSAI, under the premise of Observation 1/Proposal 2 and to leave it up to the UE to select the S-NSSAIs it sees fit from a single Allowed NSSAI. However this could be left to Stage 3 to discuss as well.
The UE may still request S-NSSAI(s) from the Configured NSSAI, if any, as already specified.

3
Conclusions

Proposal 1: whether and how slices co-exist is a deployment issue as long as a single AMF serves a UE at any one time.

Observation 1/Proposal 2: All S-NSSAIs present in an Allowed NSSAI can co-exist.

Observation 2: A requested S-NSSAI that cannot co-exist with other S-NSSAIs in an Allowed NSSAI will be rejected.

Observation 3: It is assumed a rejected S-NSSAI may or may not co-exist with S-NSSAIs in the corresponding Allowed NSSAI.

Proposal 3: The network rejects any requested S-NSSAI that cannot co-exist with any S-NSSAI(s) in an Allowed NSSAI, with associated rejection cause and validity.
Observation 4: Allowed NSSAI and Rejected S-NSSAIs provide a fully flexible framework for operators to handle slice co-existence in the UE without the need for complex (semi-)static and constraining PLMN-wide co-existence rules. 

Overall conclusion: No slice co-existence rules shall be introduced for the UE in Release 15 – the existing specified framework of Allowed NSSAI and Rejected S-NSSAI can address slice co-existence aspects from a UE standpoint.
References

[1]
S2-178541 OI4f Coexistence and isolation among network slices, Nokia, Nokia Shanghai Bell, Telecom Italia

